Reading Papers List

Reading Papers List

Classification

Architecture

Optimization / Regularization

  • Taking the human out of the loop: A review of bayesian optimization (2016), B. Shahriari et al. [pdf]
  • Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift (2015), S. Loffe and C. Szegedy [pdf] :sparkles:
  • Delving deep into rectifiers: Surpassing human-level performance on imagenet classification (2015), K. He et al. [pdf] :sparkles:
  • Dropout: A simple way to prevent neural networks from overfitting (2014), N. Srivastava et al. (Hinton) [pdf] :sparkles:
  • Adam: A method for stochastic optimization (2014), D. Kingma and J. Ba [pdf]
  • Spatial pyramid pooling in deep convolutional networks for visual recognition (2014), K. He et al. [pdf]
  • Regularization of neural networks using dropconnect (2013), L. Wan et al. (LeCun) [pdf]
  • Improving neural networks by preventing co-adaptation of feature detectors (2012), G. Hinton et al. [pdf] :sparkles:
  • Random search for hyper-parameter optimization (2012) J. Bergstra and Y. Bengio [pdf]

Multi-label

Detection

Segmentation

Supervised

Weakly-supervised


本作品采用知识共享署名 2.5 中国大陆许可协议进行许可,欢迎转载,但转载请注明来自 Sunshine 并保持转载后文章内容的完整。本人保留所有版权相关权利。

本文链接:http://gaobb.github.io/2016/06/04/ReadingPaperList/

坚持原创技术分享,您的支持将鼓励我继续创作!

热评文章